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Agenda 

• Nearly Zero Energy Buildings 
 

• CCHP Technology 
 

• Case Study 
 

• Further work needed 
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Nearly Zero Energy  
• European Directive EPBD-2 2010 

all new and extensively refurbished buildings to be “nearly 
zero energy” from:  
• 2019 – public buildings 
• 2020 – all other buildings 

 
• Definition of “nearly zero energy” to be produced by 

each member state  
 

• Calculations to be carried out using accredited 
software 



UK - Zero Carbon 

 
• Net zero CO2 emissions over whole year based 

arising from energy used by building HVAC and 
Lighting (“Regulated Energy”) 
 

• Allows for exporting energy  
 

• Excludes lifts/escalators, small power, server 
rooms etc, industrial processes (“Unregulated 
Energy”) 

 
 



(Likely) Zero Carbon Strategy 

 
 

ZERO CARBON 

Improved fabric 
More efficient plant 

Renewable energy 
CHP or CCHP 
Export electricity or heat 

Financial Contribution to 
local energy efficiency 
schemes 

Reduce Energy Demand 

Generate Low Carbon 
Energy On-site 

Remainder 



VERY energy efficient but on-site renewable contribute very little 
(Courtesy of Grontmij UK) 
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Carbon Emissions from New, Non-Domestic Buildings in 
England 

ZERO 
CARBON 

Lowest probably achievable 
without use of Renewable Energy 



Case Study – London Office Building 

New-build 10 storey office 
 
61,000m2 gross floor area 
 
Completed 2011 
 
Designed to approach Zero 
Carbon: 
 
•High Efficiency Facade 
 

•High Efficiency HVAC & L 
 

•Solar Hot Water 
 

•Bio-fuel Tri-generation 
 
 
 (Courtesy of Grontmij UK) 
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Comparison between Vapour Compression and 
Absorption Chillers 

Vapour Compression Absorption  

 
COP 

 
Cooling duty (kW) 
Power input (kW) 

 
 
 

COP typically about 5  

COP is function of 
temperature of heat 

source: 
90oC   -   0.6 to 0.7 
500oC  -  0.9 to 1.0 

 
 

Fuel 

 
 

Electricity 

LTHW 
MTHW 

Flue Gas 
Natural Gas 

Heat Rejection Rate 
 

(1 +1/COP)) x cooling duty 

  
Typically about 1.2 x 

cooling duty 

  
Between 2 and 2.7 x 

cooling duty 

 
Condenser water temperature 

T 
Typically 45oC 

 
Typically 35oC 

Based on commercial size machines 200-1000 kW 
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Principle of Tri-generation 
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Case Study with CCHP 

ZERO 
CARBON 

Lowest probably achievable 
without use of Renewable Energy 

Declared results using TWO 385kWe  engines 
running on fuel with carbon factor  similar to FAME 



Simple analysis 

Input Output Rates for CCHP 
(KW) 

Carbon factors  
(kgCO2/kWh) 

E Electrical output Cge Grid electricity 

L Low grade heat output Chf Heating fuel 

H High grade heat output 

F Fuel input Cf Fuel used by engine 

Plant efficiencies/COP Derived factors 

ηhg Alternative Heat generator  ηE Electrical efficiency = E/F 

ηvc Vapour Compression chiller R Total heat to power ratio 
=(H+L)/E 

ηabs Absorption chiller 



simple analysis -heating 
 
It can be shown that (when operating at full load): 
 
If all (high grade and low grade) heat produced is used for heating then 
 
 
 
 
  
Where S/E is the savings in carbon emissions per unit of electrical 

output produced (kgCO2/kWhe) 
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simple analysis- cooling 
 
 
 
If all (high grade and low grade ) heat produced is used for cooling: 
 
 
 
 
  
Where S/E is the savings in carbon emissions per unit of electrical 

output produced (kgCO2/kWhe) 
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simple analysis 
 

In reality, not all of the heat produced might be used for either heating or 
cooling but rejected in which case: 

 
 
 

Heating only:  
 
 
 

Cooling only: 
 
 
 
 
 

Where X is the fraction of available heat used 
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Based on case study 

Input Output Rates for CCHP 
(KW) 

Carbon factors  
(kgCO2/kWh) 

E Electrical output 385 Cge Grid electricity 0.58 

L Low grade heat output 193 Chf Heating fuel (nat gas) 0.20 

H High grade heat output 250 

F Fuel input (LCV) 1073 Cf Fuel used by engine various 

Plant efficiencies/COP Derived factors 

ηhg Heat generator  (gas boiler) 0.90 ηE Electrical efficiency = E/F 0.36 

ηvc Vapour Compression chiller 5.0 RH High grade heat to power 
ratio =(H+L)/E 

1.15 

ηabs Absorption chiller 0.96 



Available fuels for reciprocating engines 

Approximate Carbon 
factor  (kgCO2/kWh) 

Natural Gas 0.20 
FAME (bio-diesel) 0.10 
Used Vegetable Oil 0.02 
Petroleum Diesel 0.30 
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0 0,5 1 1,5 2 2,5 3 3,5 

total electrical demand 

cooling demand 

electrical output 

cooling output 

electrical output 
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GWh per annum 

Run Hours to achieve Zero Carbon 

Used Vegetable Oil (0.02kgCO2/kWh) 
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Further Work 

• Need to improve accredited software so can 
model CCHP more realistically 
 

• Need to bridge the gap between predicted 
and actual energy consumption 
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