Photovoltaic cell and module physics and technology

Vitezslav Benda, Prof Czech Technical University in Prague

benda@fel.cvut.cz

www.fel.cvut.cz

Outlines

- Photovoltaic Effect
- Photovoltaic cell structure and characteristics
- Photovoltaic cell construction and technology
- PV modules construction and technology
- Summary

Solar energy

Photovoltaics

Direct transformation energy of solar irradiation into electricity

1. Light absorption in materials and excess carrier generation

Photon energy $h v = hc/\lambda$ (h is the Planck constant) photon momentum ≈ 0

Light is absorbed in the material.

$$\Phi(x)$$
 is the light intensity $\Phi(x) = \Phi_0 \exp(-\alpha x) = \Phi_0 \exp\left(-\frac{x}{x_L}\right)$
 $\alpha = \alpha(\lambda)$ is the absorption coefficient
 $x_L = \frac{1}{\alpha}$ is the so-called **absorption length**

$$\int_0^{x_L} \Phi(x) dx = 0.68 \int_0^{\infty} \Phi(x) dx$$

Absorption is due to interactions with material particles (electrons and nucleus). If particle energy before interaction was W_1 , after photon absorption is $W_1 + h v$

- interactions with the lattice –results in an increase of temperature
- interactions with free electrons results also in temperature increase
- interactions with bonded electrons- the incident light may generate some excess carriers (electron/hole pairs)

At interaction with photons of energy $h_{\mathcal{V}} \ge W_g$ are generated and carrier generation increases

electron-hole pairs

$$G(\lambda; x) = \left(\frac{d\Delta n}{dt}\right)_{gen} = \alpha(\lambda)\beta(\lambda)\Phi_0(\lambda)\exp\left(-\alpha(\lambda)x\right)$$

$$n = n_0 + \Delta n$$
, $p = p_0 + \Delta p$

Excess carriers recombine with the recombination rate τ is so called carrier lifetime

$$R = \left(\frac{d\Delta n}{dt}\right)_{rec} = -\frac{\Delta n}{\tau}$$

In dynamic equilibrium $\Delta n = \Delta p = \tau G$

Efficiency of excess carrier generation by solar energy depens on the semiconductor band gap

Suitable materials

Silicon
GaAs
CuInSe₂
amorphous SiGe
CdTe/CdS

To obtain a potential difference that may be used as a source of electrical energy, an inhomogeneous structure with internal electric field is necessary.

Suitable structures with built-in electric field:

PN junction

• heterojunction (contact of different materials).

• PIN structures

Principles of solar cell function

In the illuminated area generated excess carriers diffuse towards the PN junction. The density J_{PV} is created by carriers collected by the built-in electric field region

$$J_{PV}(\lambda) = q \int_{0}^{H} G(\lambda; x) dx - q \int_{0}^{H} \frac{\Delta n}{\tau} dx - J_{sr}(0) - J_{sr}(H)$$

$$J_{sr} \text{ is surface recombination}$$

Total generated current density

$$J_{PV} = \int J_{PV}(\lambda) d\lambda$$

Illuminated PN junction: supperposition of photo-generated current and PN junction (dark) I-V characteristic

Solar cell I-V chacteristic and its importan points

Important solar cell electrical parameters

- open circuit voltage V_{OC} ,
- short circuit current I_{SC}
- maximum output power $V_{mp}I_{mp}$

• fill factor
$$FF = \frac{V_{mp}I_{mp}}{V_{OC}I_{SC}}$$

• efficiency
$$\eta = \frac{V_{mp}I_{mp}}{P_{in}} = \frac{V_{OC}I_{SC}FF}{P_{in}}$$

All parameters V_{OC} , I_{SC} , V_{mp} , I_{mp} , FF and η are usually given for standard testing conditions (STC):

- spectrum AM 1.5
- radiation power 1000 W/m²
- cell temperature 25°C.

Modelling I-V characteristics of a solar cell

PN junction I-V characteristics

$$J = J_{01} \left[\exp \left(\frac{qV_j}{\varsigma_1 kT} \right) - 1 \right] + J_{02} \left[\exp \left(\frac{qV_j}{\varsigma_2 kT} \right) - 1 \right]$$

$$J_{01} = n_{\rm i}^2 q \left(\frac{D_{\rm n}}{L_{\rm n}} \frac{1}{p_{\rm p0}} + \frac{D_{\rm p}}{L_{\rm p}} \frac{1}{n_{\rm n0}} \right) \qquad J_{02} = \frac{q n_i d}{\tau_{\rm sc}} \qquad 1 \le \zeta_1 \le 2 \qquad 2 \le \zeta_2$$

Output cell voltage $V = V_i - R_s I$

A - total cell area A_{ill} - illuminated cell area

$$I = A_{ill}J_{PV} - AJ_{01} \left[\exp \left(q \frac{V + R_s I}{\varsigma_1 kT} \right) - 1 \right] - AJ_{02} \left[\exp \left(q \frac{V + R_s I}{\varsigma_2 kT} \right) - 1 \right] - \frac{V + R_s I}{R_p}$$

Influence of temperature

For a high R_p
$$V_{OC} \approx \frac{kT}{q} \ln \frac{I_{PV}}{I_{01}}$$

$$I_{01} \sim n_i^2 = BT^3 \exp \left(\frac{-W_g}{kT}\right)$$
 Consequently
$$\frac{\partial V_{OC}}{\partial T} < 0$$

For silicon cells the decrease of V_{OC} is about 0.4%/K

Both fill factor and efficiency decrease with temperature

$$\frac{\partial FF}{\partial T} < 0 \qquad \frac{\partial \eta}{\partial T} < 0$$

At silicon cells $\frac{1}{\eta} \frac{\partial \eta}{\partial T} \approx 0.5\% K^{-1}$

 R_s increases with increasing temperature R_p decreases with increasing temperature

Cell type	η (28°C)	$(1/\eta)(d\eta/dT)$ [×10 ⁻³ /°C]
Si	0.148	-4.60
Ge	0.090	-10.1
GaAs/Ge	0.174	-1.60
InP	0.195	-1.59
a-Si	0.066	-1.11 (nonlinear)
CuInSe ₂	0.087	-6.52

The resistances $R_{\rm s}$ and $R_{\rm p}$ influences the cell efficiency

At a constant irradiance

PV cell (module) with a high R_s

The efficiency decreases with increasing irradiance

PV cell (module) with a low R_s
the efficiency increases with irradiance

To maximise current density J_{PV} it is necessary

- minimise losses

Optimising cell thickness and PN junction depth

The photo-current density J_{PV} consists from carriers collected by the electric field in the space charge region of the PN junction, i.e. from carriers generated in a distance of about diffusion length from the PN junction.

The PN junction depth x_j should be less than 0.5 μ m (0.2 μ m is desirable).

To decrease recombination, defects should be passivated

Optical losses

Surface texturing

If the surface has a pyramidal structure it is possible to decrease reflection on about one third of that on a plane surface

Antireflection coating

Both principles (surface texturing and antireflection coating) can be combined to minimise losses by surface reflection

Electrical losses

Series resistance R_s influences strongly solar cells efficiency

Series resistance R_s consists of:

- •R₁ contact metal-semiconductor on the back surface
- •R₂ base semiconductor material
- •R₃ lateral emitter resistance between two contact grid fingers
- •R₄ contact metal-semiconductor on the grid fingers
- •R₅ resistance of the grid finger
- •R₆ resistance of the collector bus

$$R_2 = \rho_{Si} H / A$$

$$R_3 \sim \frac{\rho_N d}{x_i}$$

$$R_5 = \frac{\rho_M l}{3bh}$$

$$R_6 \sim \frac{\rho_M l_B}{h b_B}$$

Two types of band structure

-direct (GaAs like)

-undirect (Si like)

Basic types of solar cells:

Crystalline silicon cells

Preparing semicondutor silicon

gases

PV cells and modules from crystalline silicon (c-Si)

PV cells are realised from crystalline silicon wafers of thickness 0.15 - 0.25 mm and sides of 100 - 200 mm

Standard mass production (c-Si cells)

- starting P-type wafers
- chemical surface texturing
- phosphorous diffusion
- SiN(H) antireflection surface coating and passivation
- contact grid realised by the screen print technique
- contact firing
- edge grinding
- cell measuring and sorting

mono-crystalline $\eta \approx 17\%$

multi-crystalline $\eta \approx 16\%$

Increasing cell efficiency

Selective emitter

Back contact cells

Hetero junction cells (HIT)

A single solar cell.....~0.5 V, about 30 mA/cm²

For practical use it is necessary connect cells in series to obtain a source of higher voltage and in parallel to obtain a higher current

Cell connection in parallel

Optimum situation: all cells have the same V_{MP}

If characteristics of individual cells in parallel differ, efficiency decreases

Cells in series..... the same current flows through all cells voltage does sums

Optimum situation: all cells have the same I_{MP}

If characteristics of individual cells in series differ, efficiency decreases

$$I = I_{PV} - I_{01} \left[\exp \left(q \frac{V + R_{s}'I}{m\varsigma_{1}kT} \right) - 1 \right] - I_{02} \left[\exp \left(q \frac{V + R_{s}'I}{m\varsigma_{2}kT} \right) - 1 \right] - \frac{V + R_{s}'I}{R_{sh}}$$

PV c-Si module technology

Module parameters

- open circuit voltage V_{OC} ,
- short circuit current I_{SC}
- maximum output power $V_{mp}I_{mp}$

• fill factor
$$FF = \frac{V_{mp}I_{mp}}{V_{OC}I_{SC}}$$

• efficiency
$$\eta = \frac{V_{mp}I_{mp}}{P_{in}} = \frac{V_{OC}I_{SC}FF}{P_{in}}$$

STC (25°C, 1kW/m², AM 1,5)

 $T_c = T_a + r_{thea}G_{ab}$

Real operating temperature

$$r_{\text{thca}} = \frac{r_{\text{thcaf}} r_{\text{thcab}}}{r_{\text{thcaf}} + r_{\text{thcab}}} \qquad r_{\text{thcab}} = \frac{d_b}{\lambda_b} + \frac{1}{h_b} \qquad r_{\text{thcaf}} = \frac{d_f}{\lambda_f} + \frac{1}{h_f}$$

NOCT (Nominal Operating Conditions Temperature)

Ambient temperature 20°C, 800 W/m², wind 1 m/s

Basic types of solar cells:

Thin film solar cells

Amorphous silicon solar cells

TCO:

 SnO_2

ITO (indium-tin oxide)

ZnO

Light trapping

Plasma enhanced CVD (PECVD)

RF electrode and substrate create the capacitor structure.

In this space the plasma and incorporated deposition of material on substrate takes place

deposition of silicon nitride $3SiH_4 + 3NH_3 \rightarrow Si_3N_4 + 12H_2$ deposition polysilicon layers $SiH_4 \rightarrow Si + 2H_2$.

The deposited layer structure depends on the gas composition and substrate temperature

150 - 350°C

dilution ratio

$$rH = ([H2] + [SiH4])/[SiH4].$$

rH < 30, amorphous silicon growth rH > 45, crystalline layers are formed

Thin film solar cell technology

Amorphous (microcrystalline) silicon solar cells

Tandem cells

Thin film modules on glass substrates

The module area is limited by the reaction Heat insulator Thermocouple chamber volume Heater Substrate Shuttle Cell n+2 Cell n+1 RF Process gas electrode Laser Scribing #3 Very expensive equipment Laser Scribing #2 Metal Coated Curibbon Silver filled adhesive a-Si Laser Scribing #1 TF-Si substrate TCO Back contact Glass

Market share development

2010 2011
Crystalline silicon 84,4% 87%
Thin Film 14,8% 12%
Others 0,9% 1%

PV module cost development

Reduction of C-Si module cost

Thin-film modules are not cheaper than modules from crystalline silicon

Reduction of silicon cost

2008..... 500 USD/kg2010......55 USD/kg2012...... 22 USD/kg

