

Degradation and Stability of Organic Solar Cells

Emil E. Bubev

Department of Physical Chemistry University of Chemical Technology and Metallurgy

Laboratory for Advanced Materials Research

Characteristics of OPV

Advantages

- Low weight
- Flexibility and tensile resistance
- Production in large areas
- Numerous usable polymers
- Ease of production
- Recyclable
- Use of ITO-free substrates

Disadvantages

- Lower efficiency: ~10% by Mitsubishi Chemical
- Affected by weathering <u>UV-light</u>, O₂, H₂O
- Need of lamination and protection
- Low estimated life-time: ~1000-2500 h

Applications of OPV

Shading canopies

Parking shading

Agricultural plastic covers

i) www.inside2outside.co.uk ii) www.shadecomforts.com iii) www.world-of-photonics.netiv) www.caconcepts.co.za

3

Real life application of OPV elements

- High module efficiency: >7%
- Large-area PV elements
- Low production cost
- OPV with long-life: >20 years
- High stability against weathering
- UV degradation tests

Effects of UV-light

- High degradation by UVB-light (315-280nm)
- Accelerated degradation when combined with O2 and H2O ingress
- Radical formation
- Changes in polymer structure
- Degradation of active layer
- Efficiency loss
- Coloring effects of laminate
- Delamination and cracking
- Lower mechanical parameters

Radical formation in presence of O2 and high intensity illumination - photobleaching

Photo-oxidation of poly-3-hexylthiophene (P3HT)

- Changes in degree of crystallinity $X = \Delta H / \Delta H^0$
- Shifts in the absorption UV-Vis spectra lower absorption efficiency
- Changes in the FT-IR spectra due to bond and structure changes generation of carboxylic acid species, formation of esters, etc.
- Arrhenius-type degradation kinetic $k = Ae^{-E_a/RT}$

- UV Absorbers (UVAs)
- Hindered Amine Light Stabilizers (HALS)
- Commercially available mixtures
- Multi-walled Carbon Nanotubes (MWCN)

UV absorbers

Isomeric effect of Butyl methoxy dibenzoylmethane

Absorption spectra of UVA

Hindered amine stabilizers

2,2,6,6-tetramethylpiperidine (TMP)

Multi-walled carbon nanotubes

Approaches for UV protection

Incorporation in barrier layers

- Suspended yellowing
- Decreased delamination of top layers
- Increase of haze
- Possible interaction with polymer

Deposition of protection layer

- Good UV protection
- No chemical reactions with polymer
- Refraction on boundary
- Need of separate production stage

Addition to active layer

- Deactivation of radicals
- No protection against yellowing
- Possible obstruction of exciton diffusion

- Broad absorption spectra in UV region
- High absorption in UVB region (315-280nm)
- High efficiency in radical scattering
- Good thermal stability and miscibility
- Lack of chemical interactions with barrier polymer (most HALS are not applicable with fluorinated polymers)
- Long life with low efficiency loss
- Low concentration 0,01 wt% to 2-3 wt%
- ► Cost consideration (~25€/kg- UVAs; ~1000€/kg- HALS and MWCN)

Weathering tests

Test requirements

- Good spectral match
- Thermal control
- Atmosphere control
- Acceleration of UV exposure
- Prolonged testing

Analytic tools

- IV-characteristics Jsc, Voc, FF, η
- IR and UV-Vis spectroscopy
- Light transmittance
- Colorimetry Yellowing index
- Mechanical testing
- SEM/EDX and TEM
- DTA/TGA
- Surface topology (AFM)

- Development of durable flexible OPV elements
- Low cost OPV
- Introduction of UV-light stabilizing additives in OPV
- Polymer-specific UV stabilizers
- Selection of appropriate additive concentration
- Investigation of degradation kinetics of OPV cells and modules

Thank you for the attention!