## Experience from PV system performence including comparison of on-roof and façade systems



**Vitezslav Benda, Zdenek Machacek** CTU Prague, Faculty of Electrical Engineering



# In the year 2001, a $3kW_p$ demonstration, on-grid connected photovoltaic system has been built at the Czech Technical University in Prague on the roof of the Faculty of Electrical Engineering.



Installed peak power:  $3320 W_p$ Total module area: $26 m^2$ Number of modules:30 (3 fields of 10)Latitude: $50.07 ^\circ N$ Altitude:205 m

#### http://andrea.feld.cvut.cz/FVS







| Module type | $P_{max}(W_p)$ | V <sub>pm</sub> (V) | $I_{pm}(A)$ | $V_{OC}(V)$ | $I_{SC}(A)$ | $\eta_{cell}$ (%) | $\eta_{module}  (\%)$ |
|-------------|----------------|---------------------|-------------|-------------|-------------|-------------------|-----------------------|
| RADIX72-112 | 111,5          | 17,4                | 6,41        | 21,5        | 7,04        | 14,9              | 12,8                  |
| RADIX72-108 | 107,8          | 17,1                | 6,29        | 21,5        | 6,98        | 14,4              | 12,4                  |

Parameters of PV modules at radiation power 1000W/m2, spectrum AM 1,5 and temperature 25°C

| PV field | Tilt angle | Module type | $P_m(W_p)$ |
|----------|------------|-------------|------------|
| 1        | 45°        | RADIX72-112 | 1120       |
| 2        | variable   | RADIX72-112 | 1120       |
| 3        | 90°        | RADIX72-108 | 1080       |

Parameters of individual PV fields

| Type of inverter         | Sunrise Mini    | Sunrise Micro   |  |
|--------------------------|-----------------|-----------------|--|
| Input voltage            | 120 - 300 V     | 120 - 300 V     |  |
| Nominal input voltage    | 170 V           | 170 V           |  |
| Maximum input<br>voltage | 350 V           | 350 V           |  |
| Output voltage           | 230 V,+10/-15%  | 230 V,+10/-15%  |  |
| Output frequency         | 50 Hz,+/-0,2 Hz | 50 Hz,+/-0,2 Hz |  |
| Output nominal current   | 4,4 A           | 3,2 A           |  |
| Output nominal power     | 1000 W          | 750 W           |  |
| Harmonic distortion      | < 3%            | < 5%            |  |
| Maximum effectivity      | 93%             | 92%             |  |
| Dark consumption         | 0 W             | 0 W             |  |

Parameters of Sunrise inverters

## Energy produced by individual PV fields in period from January 2002 to May 2009



## A comparison of estimated and measured energy production in period from January 2002 to May 2007



#### Comparison of on-roof and façade PV field in the year 2006



### **Temperature dependece of energy conversion efficiency**



This gives the efficiency decrease of about 0.6% per 1K, which is higher than supposed decrease of cell efficiency (about 0.4% per 1K).

It means that an increase of losses with increasing temperature in other parts of system cannot be neglected.



#### **Temperature distribution over the PV field areas**







#### **Temperature distribution over the PV field areas**



Temperature of the PV field (°C)





## Conclusions

- Facade PV system applications can produce about 66% of electrical energy produced by the roof (45° tilted) one
- Efficiency of PV systems is strongly influenced by temperature
- PV field constructions should allow an effective cooling of PV modules

http://andrea.feld.cvut.cz/FVS/